
CPE 470 - Clock Domains



Clock Domains

● Different parts of a digital system have different logic depths and clock needs
○ Floating Point Unit will have deeper logic than CPU’s integer ALU
○ IO might need to be slow (I2C) or extremely fast (PCIe)

● If all components share the same clock, they are limited by slowest component

Glossary
Clock Domain: all the synchronous elements 
controlled by one specific clock signal 

CPU FPU

Memory

IO

● Solution → Separate Clocks Domains
○ Deeper logic, Memory, SRAM gets 

slower clocks
○ Cheap computation gets fast clock

Where do all these clocks come from?
How do we navigate between them?



Clock Generation & PLLs
● Two ways to get clocks

○ Off-chip → crystal oscillator
■ Higher frequencies (50+ Mhz) are hard to pcb 

layout
○ On-chip → clock divider
○ On-chip → generate with a PLL

● PLLs act as clock multipliers
○ Take in a reference clock and multiply it
○ Uses a VCO to generate an arbitrarily fast clock
○ Uses feedback to tune VCO to correct frequency

555 Timer as a basic VCO

Glossary
PLL: phased-locked loop; an analog circuit 
that uses feedback to multiply a clock
VCO: voltage-controlled oscillator changes 
output frequencies based on input voltage



PLL Types
● DPLLs: digital logic for phase detection, low pass, etc.

○ Still need analog for the oscillator output
○ Smaller area than full analog
○ Digital quantization limits upper frequency

● APLLs: fully analog, including phase detect and filtering
○ Higher accuracy than digital allows higher frequencies
○ Analog is more complicated and higher area usage

Glossary
APLL: analog PLL
DPLL: digital PLL

Digital PLL uses DCO (DAC+VCO) 
to generate outputAnalog PLL uses charge pump to regulate VCO voltage



Crossing Clock Domains
● Signals will have to cross between 

clock domains → Use a CDC

● Why not just go through a flip flop?
○ Clocks are not synchronized
○ Signal could change during 

destination clock transition
■ Metastability!

● There is ALWAYS a chance of 
metastability on a CDC
○ With only one flop, metastability 

will propagate through system :(

Glossary
CDC: clock domain crossing



Flip Flop Synchronizer
● 2 Flip flops highly reduces chance of metastability propagating

○ First flip flop will often be metastable, but low odds of propagating to second
○ Does not guarantee correctness!

■ In the case of metastability, the second flop will resolve to unknown value



Failure Rates
● Having 2 flip flops significantly 

metastability at the output
○ Does not eliminate it

● Chance for metastability to spread 
from first flop to second

● Use MTBF as metric for how unlikely 
failures are
○ Generally, MTBF should be longer 

than the lifetime of the product
● Gets worse the more CDCs there are

○ With 10 CDCs and 100 year lifespan, 
MTBF should be 1000 years

Glossary
MTBF: mean time between failures

H = # of CDCs



N-Flip Flop Synchronizer
● Adding more stages of flip flops significantly increases MTBF

○ At the cost of one extra cycle of latency
■ Throughput remains the same because pipelined

● Higher frequency designs require more stages
○ 2 stages is plenty for Skywater designs on the order of 100 MHz
○ High speed designs can use anywhere from 3-30 flip flops



Navigating Non-Correctness

● When metastability occurs on flop 1, flop 2’s output will (usually) be 0 or 1
○ This only occurs on a transition at the input

● Two cases can occur:
1. Get Lucky: Flop 2’s output resolves to the most recent value at the CDC
2. Get Delayed: Flop 2’s output resolves to the previous value at the CDC

a. Eventually metastability at flop 1 will end
b. At this point, Flop 2 will update to most recent value

● For a one bit signal, an “incorrect” value only causes a delay in correctness
○ As long as CDC input signal is held, guaranteed to eventually get a correct value



Multi-Bit Synchronization
● Correctness ended up being less 

of a problem for one bit signals
● Still a huge problem for multi-bit 

signals due to synchronization

● What if one bit is correct and 
another is delayed?
○ Multi Bit → Worst case is 

complete incorrectness
○ Single Bit → Worst case was 

delayed correctness

● Generally, we cannot pass 
arbitrary multi-bit signals thru 
CDC



Handshaking
● Can use single bit control signals to facilitate transfer of multi-bit data

1. Send multi-bit data without CDC 
and wait for it to propagate

2. Send ready signal through CDC, 
which will arrive later

3. Wait for response from CDC, 
which will arrive even later

4. Ready to stop holding data line

+ Now we can send multi-bit data
- High latency, low throughput 

due to control signal delays
- Requires stateful FSM on either 

side



Gray Encoding
● Generic multi-bit signals can’t go thru CDC

○ Multiple Bits transition at the same time and could get unsynchronized

● How can we encode data such that it can go thru?
○ Ensure that only one bit will transition at a time

● Gray Encoding ensures that only one bit will change for an increasing sequence
○ Only works for consecutive data, like a counter
○ The binary transition from 111 to 000 is instead 100 to 000

■ Go from n bits transitioning at once to only 1

● Can now sync counters across clock domains
○ What can we do with this?

Glossary
Gray Encoding: encoding scheme where one bit 
transitions between consecutive numbers



References
● https://anysilicon.com/clock-domain-crossing-cdc/
● https://web.archive.org/web/20070125072758/http://www.cadence.com/

whitepapers/cdc_wp.pdf
● https://blog.abbey1.org.uk/index.php/technology/managing-mean-time-b

etween-failure-in-xilinx-devices
● https://www.eetimes.com/understanding-clock-domain-crossing-issues/
●

https://web.archive.org/web/20070125072758/http://www.cadence.com/whitepapers/cdc_wp.pdf
https://web.archive.org/web/20070125072758/http://www.cadence.com/whitepapers/cdc_wp.pdf
https://blog.abbey1.org.uk/index.php/technology/managing-mean-time-between-failure-in-xilinx-devices
https://blog.abbey1.org.uk/index.php/technology/managing-mean-time-between-failure-in-xilinx-devices
https://www.eetimes.com/understanding-clock-domain-crossing-issues/

